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a b s t r a c t 
Error threshold is the upper bound of the mutation rate such that the genetic informa- 
tion can pass on during reproduction. In Eigen’s original proposal, the fitness landscape 
consists of a single peak along with other background sequences. However, realistic fitness 
landscapes are far more complicated and thus obstruct deeper understanding from either 
analytic or numerical approaches. Here we propose a variational approach to derive the er- 
ror thresholds in generic fitness landscapes. When applying to the Eigen model, it delivers 
the correct error threshold and reveals the scaling relations between relevant parameters. 
For the fitness landscape with a peak–mesa profile, the two-dimensional phase diagram 
in the mesa fitness and the mutation rate can be computed with minimal cost. When 
the mesa fitness is larger than some critical value, upon increasing the mutation rate, the 
quasispecies changes from the peak to the mesa and then dissolves into the random back- 
ground. The phase boundaries can be computed analytically within the effective-fitness 
approximation. At the end, the universal phase diagram in terms of the rescaled variables 
is explained in detail. 

© 2017 The Physical Society of the Republic of China (Taiwan). Published by Elsevier B.V. 
All rights reserved. 

1. Introduction 
In 1971, Eigen proposed a simple yet profound model to investigate the processes of molecular replication, leading to 

the important concept of quasispecies [1] . The model stimulates both experimental and theoretical studies on molecular 
perspective for biological evolution [2–5] and advances our understanding in evolutionary dynamics. In Eigen’s original pro- 
posal, selection moves the population towards the better adapted mutants and explores for even better ones in the sequence 
space by random mutations. A quasispecies, consisting of a wild type with the largest fitness accompanied by nearby mutant 
types in the sequence space [6] , emerges as the robust population profile after some transient period. This simple model is 
widely applied to general evolutionary processes, particularly suitable for viral evolution [4,5] and population genetics [7–9] . 

It has been shown that there exists an error threshold [10,11] as an upper bound on the mutation rate, above which 
the quasispecies becomes unstable and no effective selection can occur. It places limits on how genetic information can 
be maintained and passed on from generations to generations and restricts possible theories for the origins of life. The 
expression of error threshold for the Eigen model was first derived by ignoring mutations back to the wild type, known as 
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the assumption of no back mutation [8] . The same expression was recovered by the exact solution of the model [12–15] later. 
And, through extensive studies by mapping to equivalent statistical models [16–20] , the existence of the error threshold can 
be viewed as a first-order phase transition [21] from the order phase (quasispecies) to the disordered phase (no effective 
selection). In recent cancer studies, it has been suggested that the tumor cells can be viewed as quasispecies [22,23] with 
instability triggered by artificially-increased mutation (mutagenesis) [24–26] exceeding the error threshold. However, it is 
puzzling that some RNA viruses [27,28] seem to have mutation rates close to (or even larger than) the error threshold. 

While the exact solution available for the single-peak Eigen model [12–15,29] , many realistic features for viral evolution 
are left out, including multiple peaks in fitness landscape [30,31] , survival of the flattest [32] , spatial effects [33–35] , mu- 
tational fitness effects [36] and so on. An exact solution incorporating these features seems out of reach. It is desirable to 
devise a mean-field approach capturing the essence of the phase transition so that the population profile of the quasispecies 
for arbitrary fitness landscapes of interest can be computed and analyzed with minimal effort s. 

The variational approach is particularly useful to study the first-order phase transitions because the number of the low- 
lying states is often limited. In this Article, we present a simple variational method to investigate the phase transitions of the 
quasispecies. We first show how to map the replication-mutation equations into a quantum mechanical system in imaginary 
time [37] . Finding the stationary population profile in the long-time limit is thus equivalent to searching the ground state 
of the mapped quantum system. Applying the variational method to the single-peak Eigen model, the quasispecies is well 
captured in simple analytic form, agreeing with the exact solution exceedingly well. In addition, one can show that the 
profile of the quasispecies depends solely on a single rescaled variable g = uL/ ln ( f p / f ) , where f p and f denote the fitness 
of the peak sequence and the random background; u is the mutation probability during reproduction and L is the genome 
length. 

In evolutionary dynamics with mutations, a fault-tolerant mesa [30,37] in the fitness landscape sometimes reigns over a 
peak with higher fitness. Due to the tremendous size of the sequence space, the stability of the quasispecies in the fitness 
landscape with the peak–mesa structure is hard to analyze. The variational method simplifies the task down to diagonalizing 
a 3 × 3 matrix. When the mesa fitness is larger than the critical value f c m = f p e −ul , where l is the fault-tolerant length of 
the whole genome, the quasispecies around the peak is first replaced by the mesa and eventually dissolves into the random 
background when the mutation probability exceeds the error threshold. On the other hand, when the mesa fitness is smaller 
than f c m , the evolution of the quasispecies remains more or less the same as in the original Eigen model. 

Using numerical calculation, we locate the mesa domain and map out the entire phase diagram for various genome 
lengths. The variational method captures the essence of the phase transition including the error threshold and the evolution 
of the wild-type population. It is rather remarkable that error thresholds for different mutation probabilities, fitness and 
genome lengths collapse onto universal curves, giving credits to the power of the variational approach. 

This article is organized as follows. In Section 2 , we briefly introduce the Eigen model and the gauge transformation 
mapping it to the equivalent Hamiltonian with imaginary-time dynamics. In Section 3 , the equivalent Hamiltonian is solved 
by the variation method, giving the error threshold and also the evolution of the wild-type population. In Section 4 , we 
calculate the back-mutation rate to the wild type and justify the assumption of no back-mutation in previous literature. 
In Section 5 , the variational method is applied to the peak–mesa fitness landscape. The phase diagram is obtained and 
explained within the effective fitness picture. Additional technical details about the s -wave decomposition and the Crow–
Kimura model can be found in the Appendices. 
2. Eigen model 

Consider a DNA chain with genome length L . The primary structure at each site of the chain takes on four different 
nucleotides ( G , A , C and U ). For simplicity, we choose to distinguish only among purines ( R ) and pyrimidines ( Y ). Thus, the 
total size of sequence space is reduced to N s = 2 L , yet still huge for numerical simulations. A viral genome with typical 
length L ∼ 10 0 0 will lead to a (reduced) sequence space of the size ∼ 10 300 . For more complex forms of life, the size of the 
sequence space increases tremendously and methods developed in statistical mechanics seem appropriate and powerful to 
address the dynamics of the genome evolution. 

The time-dependent relative population of a particular sequence i is denoted as x i ( t ). The selection is on the genotype 
level described by the fitness f i for each sequence. In general, the fitness function can be rather complicated and evolves 
with time. Here it is assumed to take on its time-averaged value and treated as a constant. Eigen proposed a deterministic 
dynamics to describe the relative populations of the sequences in the presence of mutations, 

dx i 
dt = ∑ 

j 
(
m i j f j − φδi j )x j , (1) 

where φ = ∑ 
i x i f i is the average fitness for all sequences. The relative populations are normalized with ∑ 

i x i = 1 initially and 
remain so under the time evolution of the above quasispecies equation. The mutation matrix m ij describes the probability 
to mutate from sequence j to sequence i in a generation and satisfies ∑ 

i m i j = 1 . If only point mutations are considered, it 
is straightforward to work out the mutation matrix 

m i j = u d i j (1 − u ) L −d i j , (2) 
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where u is the probability for a single point mutation to occur within one generation and d ij is the Hamming distance 
[38] between the sequences. Since d i j = d ji , it is clear that the mutation matrix m ij is also symmetric. 

The quasispecies equation can be transformed into an imaginary-time Schrödinger equation by the gauge transformation, 
#i (t) = √ 

f i x i (t) e W (t) , (3) 
where ˙ W (t) = φ(t) , which is a form of integration factor transformation [39,40] allowing us to do away with the nonlin- 
earity in Eq. (1) . Applying the gauge transformation to the quasispecies equation, the dynamics of # i ( t ) is captured by an 
effective Hamiltonian H ij , 

d#i 
dt = −∑ 

j H i j # j , with H i j = −√ 
f i f j m i j . (4) 

One notices that the above equation can be obtained from the usual Schrödinger equation by replacing the time variable 
t → it (and setting h̄ = 1 ). Following the standard textbooks, the general solution for the “imaginary-time” Schrödinger 
equation is 

#i (t) = ∑ 
n c n $n 

i e −E n t , (5) 
where E n and $n 

i are the eigenvalues and eigenvectors of the Hamiltonian H ij . Note that the factor √ 
f i in the gauge trans- 

formation is crucial to make the Hamiltonian hermitian (real and symmetric here). One can still find the steady state of 
the dynamical Eq. (1) as the eigenstate with the maximum eigenvalue without the rescaling factor [41] but the variational 
approach presented below requires a hermitian matrix. 

Unlike the intrinsic oscillatory nature of the usual Schrödinger equation, its imaginary-time version only keeps the 
ground state in the infinite-time limit, 

lim 
t→∞ #i (t) −→ c 0 $0 

i e −E 0 t , (6) 
and greatly simplifies the calculations. Making use of the normalization condition, ∑ 

i x i = 1 , the exponential factor in the 
gauge transformation can be expressed as 

e W (t) = ∑ 
i 

1 √ 
f i #i (t) . (7) 

The inverse gauge transformation can thus be found, 
x i (t) = 1 √ 

f i #i (t) e −W (t) 
= 

( 
1 

∑ 
j # j / √ 

f j 
) 

1 √ 
f i #i (t) . (8) 

In the infinite-time limit, only the ground-state wave function survives and the relative populations are 
x ∗i = lim 

t→∞ x i (t) = 
( 

1 
∑ 

j $0 
j / √ 

f j 
) 

1 √ 
f i $0 

i . (9) 
Note that the constant c 0 cancels out and does not appear in x ∗

i . To find the survival populations x ∗
i , one only needs to find 

the ground state $0 
i of the Hamiltonian. 

3. Variational method 
In Eigen’s original proposal, the fitness landscape consists of a peak f 0 = f p for the wild-type sequence (labeled as “0”) 

and the random background for other mutants. For simplicity, all other sequences i ' = 0 have a common background fitness 
f i = f smaller than the fitness peak. Even though the single-peak fitness landscape looks simple, the size of the sequence 
space is still huge N s = 2 L . Here we choose two symmetric base functions, 

#1 = (1 , 0 , . . . , 0) , #2 = 1 √ 
N s − 1 (0 , 1 , 1 , . . . , 1) , (10) 

and use variational approach to estimate the error threshold for the Eigen model. The wild-type sequence is represented by 
#1 and the uniform distribution of the background mutant is represented by #2 . All other configurations are ignored in the 
following variational calculations. 

Construct the wave function for the ground state with two constrained variational parameters, 
#i = c 1 #1 

i + c 2 #2 
i , (11) 
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where c 2 1 + c 2 2 = 1 arises from the normalization condition. The variational energy takes the form, 

E(c 1 , c 2 , λ) = ∑ 
n,m =1 , 2 c n H nm c m + λ(c 2 1 + c 2 2 ) , (12) 

where the Lagrange multiplier arises from the normalization condition. The variational Hamiltonian H nm is a 2 × 2 real 
symmetric matrix constructed from the original Hamiltonian in the full sequence space, 

H nm = N s ∑ 
i, j=1 #n 

i H i j #m 
j . (13) 

Because only point mutations are considered here, the matrix elements can be computed after some algebra, 
H 11 = − f p (1 − u ) L , (14) 
H 22 = − f + f 

N s − 1 [1 − (1 − u ) L ], (15) 
H 12 = H 21 = −√ 

f p f 
N s − 1 [1 − (1 − u ) L ]. (16) 

Minimizing the variational energy E ( c 1 , c 2 , λ) is equivalent to diagonalizing the 2 × 2 variational Hamiltonian H nm rewrit- 
ten as 

H nm = C 1 + f (−ε −'
−' ε

)
. (17) 

The constant term does not affect the frequencies x i ( t ) after the inverse gauge transformation, 
C = −1 

2 
[

f p m 00 + f − f 
N s − 1 (1 − m 00 ) ], (18) 

with m 00 = (1 − u ) L and will be dropped in the following calculations. The dimensionless parameters ε and ' in the varia- 
tional Hamiltonian are 

ε(u, L, r) = 1 
2 [ rm 00 − 1 ] + 1 − m 00 

2(N s − 1) , (19) 
'(u, L, r) = √ 

r 
N s − 1 [ 1 − m 00 ] , (20) 

where r = f p / f is the ratio of fitness for the wild-type sequence and the background. The eigenvalues of the variational 
Hamiltonian are 

E ± = ±√ 
ε2 + '2 . (21) 

Therefore, the ground-state energy within the variational approximation corresponds to the negative eigenvalue E = E − with 
the eigenvector 

c 1 
c 2 = '√ 

ε2 + '2 − ε
= √ 

ε2 + '2 + ε
'

. (22) 
With the coefficients c 0 and c 1 at hand, the ground state within the variational approximation is 

$ = (c 1 , c 2 √ 
N s − 1 , c 2 √ 

N s − 1 , . . . , c 2 √ 
N s − 1 

)
. (23) 

The relative population of the wild-type sequence in the infinite-time limit can be computed from the variational ground 
state, 

x ∗0 (u, L, r) = 
( 

1 
∑ 

j $ j / √ 
f j 

) 
1 √ 
f 0 $0 

= √ 
ε2 + '2 + ε

√ 
ε2 + '2 + ε + √ 

r(N s − 1) ' . (24) 
As shown in Fig. 1 , the stationary population of the wild-type sequence x ∗0 is plotted against the mutation probability u 

for different genome lengths ranging from L = 8 to L = 20 . The fitness landscape consists of a single sharp peak with relative 



610 C.-I. Huang et al. / Chinese Journal of Physics 55 (2017) 606–618 

Fig. 1. The stationary population of the wild-type sequence x ∗0 plotted versus the point mutation rate u and the rescaled variable g = uL/ ln r with fitness 
ratio r = 2 . The genome length varies from L = 8 (blue) to L = 20 (red). The error threshold g c = 1 can be spotted clearly when plotted versus the rescaled 
variable g . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
fitness r = f p / f = 2 to a uniform background fitness f for all other sequences. The error threshold, where the quasispecies 
disappears, marks the phase transition and, in theory, is only well defined in the thermodynamic limit with infinite genome 
length. However, it is clear that the transition from the quasispecies to the random background (without any effective selec- 
tion) is already sharp for finite genome length. Furthermore, the evolution of the quasispecies with different genome lengths 
collapses onto a universal curve when plotted with the rescaled variable, 

g = uL 
ln ( f p / f ) . (25) 

As is evident in Fig. 1 , the collapse is almost perfect even for such short genome lengths. The error threshold occurs at 
g c = 1 , that is, 

u c L = ln ( f p / f ) , (26) 
agreeing with the exact solution for the Eigen model. 

The variation approach allows one to derive the universal curves for arbitrary fitness ratios. The thermodynamic limit 
corresponds to taking the genome length L to infinity while keeping the rescaled variable g = uL/ ln r finite. The probability 
to stay in the wild-type sequence during reproduction simplifies, m 00 = (1 − u ) L → r −g . Because the off-diagonal term of the 
Hamiltonian ' is negligibly small, the stationary population of the wild-type sequence can be put down in analytic form, 

lim 
L →∞ x ∗0 = 1 

2 [ | r 1 −g − 1 | + (r 1 −g − 1)] 
1 
2 [ | r 1 −g − 1 | + (r 1 −g − 1)] + r(1 − r −g ) . (27) 

The above form can be further simplified: since the relative fitness r is greater than unity, the numerator is zero for g > 1. 
Finally, the stationary population x ∗0 in the thermodynamic limit falls onto the universal curve, 

x ∗0 (g, r) = ((1 − g) r 1 −g − 1 
r − 1 . (28) 

The universal curves for different fitness ratios is shown in Fig. 2 . When the fitness peak is barely larger than the background 
( r → 1 + ), the population of the wild-type sequence, x ∗0 = 1 − g, falls off linearly to zero at the error threshold. It is quite 
interesting that these universal curves are identical to those derived under the assumption of no back mutations to the 
wild-type sequence. We shall come back to this coincidence in the next section. 

How reliable is the variational approach? The use of the two-dimensional ansatz, Eqs. (10) and (11) , here assumes that 
all the background sequences have the same population. In the original problem, the population of a sequence should de- 
pend on its Hamming distance from the peak. For a given chain length, the uniform distribution is approached when the 
mutation rate is large. Near the transition g = 1 , this is the case when the peak-to-background fitness ratio r is large. Larger 
deviation can be expected when r → 1 + but the general trend is not expected to change qualitatively. We check the validity 
of the variational results by comparing with the exact diagonalization in Fig. 3 . The ground-state energy and the stationary 
population of the wild-type sequence agree extremely well. Since the peak structure is spherical symmetric in the sequence 
space, it is inspiring to project the full Hamiltonian onto the reduced s -wave basis, where calculation details can be found 
in Appendix A . Note that, after the s -wave decomposition, the dimension of the sequence space N s = 2 L is reduced to L + 1 , 
characterized by the Hamming distance from the fitness peak. This corresponds to the ansatz of having different stationary 
populations x i for different classes of Hamming distance from the peak [42] . For the genome length L = 7 , both the 2 ×
2 variational Hamiltonian and the (L + 1) × (L + 1) s -wave projected Hamiltonian agree with the exact diagonalization re- 
markably well. We see an exact match of some eigenvalues for the s -wave decomposed and the exact Hamiltonian due to 
the spherical symmetry of the fitness landscape. Some additional eigenvalues of the full Hamiltonian, missed in the s -wave 
decomposition, correspond to asymmetrical modes. 
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Fig. 2. The universal scaling function x ∗0 (g, r) in the limit of infinite genome length. The transition is sharp and the universal scaling function varies with 
relative fitness from r = 1 + (purple) to r = 16 (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. Comparison of (a) the eigenvalues and (b) stationary population of the wild-type sequence among the variational, the s -wave decomposed and the 
exact Hamiltonians with genome length L = 7 and the fitness ratio f p / f = 2 . 
4. No back mutation? 

The variational method also provides a helping hand to checking how good the assumption of no back mutations is. A 
good indicator is the ratio between the back-mutating rate and the rate to stay in the wild-type sequence, 

χ (u, L, r) = ∑ 
j ' =0 m 0 j f j x ∗j 
m 00 f 0 x ∗0 . (29) 
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Fig. 4. The back-mutation ratio χ ( u , L , r ) plotted versus the rescaled variable g = uL/ ln r with fitness ratio r = f p / f = 2 and genome lengths ranging from 
L = 8 (blue) to L = 20 (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
Within the variational approximation, all x ∗

j = x ∗1 for j ' = 0 and the summation in the numerator can be carried out without 
difficulty, 

χ (u, L, r) = x ∗1 f (1 − m 00 ) 
x ∗0 f M m 00 

= √ 
f 

f M 1 − m 00 
m 00 c 1 √ 

(N s − 1) c 0 . (30) 
For r = 2 , the back-mutation indicator χ is shown in Fig. 4 . When the quasispecies exists, the back-mutation rate is exponen- 
tially small even for finite genome length. Therefore, the assumption of no back mutations is justified in this regime. On the 
other hand, when the mutation probability u exceeds the error threshold, the indicator χ grows exponentially and shows 
that the back-mutation rate dominates and cannot be ignored. In fact, the dynamics is dominated by mutual mutations 
between different sequences and no effective selection is at work. The variational method gives useful estimate for back 
mutations rates. Again, as shown in Fig. 4 , when plotted against the rescaled variable g = uL/ ln r, all curves collapse onto 
a universal function in the thermodynamic limit. This is consistent with the exact results accounting for the back-mutation 
by Saakian and Hu [15] in the L → ∞ limit. Finite-size corrections of the results has also been reported by Saakian [29] for 
the mean fitness of the population as well as the distributions of species. Comparing to these exact results from the large L 
limit, our definition of the ratio χ and the variational approximation provide an intuitive perspective on the importance of 
back mutation from a different angle. 

Similarly, by taking the genome length to infinity, the universal function for χ ( g , r ) can be derived. The only tricky term 
in χ ( g , r ) is 

lim 
L →∞ c 1 √ 

(N s − 1) c 0 = ((g − 1) 1 − r 1 −g 
√ 

r (1 − r −g ) . (31) 
After some algebra, the universal function for the back-mutation indicator in the thermodynamic limit is quite simple, 

χ (g, r) = ((g − 1) (r g−1 − 1 ). (32) 
The universal function χ ( g , r ) is zero below the error threshold and grows exponentially above it. Therefore, when consider- 
ing the stability of the quasispecies, the assumption of no back mutations to the wild-type sequence is well justified in the 
thermodynamic limit. We note that for finite L , the Eigen’s derivation based on no back mutation also matches surprisingly 
well to the exact solution [1,29] . This has recently been shown to result from subtleties, such as, the normalization condition 
of the sequence distribution [43] adopted by Eigen. 
5. Peak–mesa landscape 

Due to inevitable mutations during reproduction, “the survival of the fittest” doe not always work. For instance, a mesa in 
the fitness landscape consists of a collection of sequences with roughly the same fitness as long as mutations occur within 
the tolerant base pairs. A single peak is fragile upon mutations while the mesa is more robust. Thus, it is possible that a 
mesa with lower fitness prevails a peak with higher fitness. Here we demonstrate how to apply the variational method to 
the peak–mesa fitness landscape. 

To be precise, let us consider the sequence space for genome length L = 8 . Without loss of generality, we assume the 
wild-type sequence to be 0 0 0 0 0 0 0 0 with peak fitness f p . A mesa with tolerant length l = 2 and distance d = 3 from the 
wild-type consists of the sequences 1110 0 0 b 1 b 2 , where b i = 0 , 1 denote the neutral base pairs. The number of sequences in 
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Fig. 5. (a) Stationary populations of the peak and the mesa versus the mutation probability u with f p = 2 , f m = 1 . 9 and f = 1 . The genome length L = 40 , 
the tolerant length l = 8 and the peak–mesa distance is d = 20 . The peak–mesa transition is rather sharp even with finite genome length. (b) The transition 
points can be located by spotted the crossings between different eigenvalues. 
the mesa is clearly N m = 2 l . For simplicity, we assume the same fitness f m for all sequences in the mesa. All other sequences 
are considered as background mutants with fitness f as before. The numbers of the sequences associated with the peak, 
the mesa and the background are N p = 1 , N m = 2 l and N b = 2 L − 2 l − 1 respectively and add up to the dimension of the 
sequence space N s = 2 L . From the above explanations, generalization to arbitrary L , l and d shall be straightforward. 

Because we are interested in the interplay between the peak, mesa and background states (represented by sets of se- 
quences P , M , and B ), we can choose the three population distribution wave functions #p , #m , #b as the basis of our 
variational wave function: 

# = c p # p + c m #m + c b #b , (33) 
where the i -th component for the base function #x 

i = 1 / √ 
N x if i ∈ X ( X = P , M , B ) and 0 otherwise. The prefactors make 

sure all base functions #x are properly normalized. The variational energy takes the form 
E(c p , c m , c b , λ) = ∑ 

x,y c x H xy c y + λ∑ 
x c 2 x , (34) 

where the Lagrange multiplier arises from the normalization constraint ∑ 
x c 2 x = 1 . Within the variational approach, the 

Hamiltonian is reduced to a 3 × 3 real symmetric matrix with the elements: 
H xy = ∑ 

i j #x 
i H i j #y 

j 
= −√ 

f x f y 
N x N y ∑ 

i ∈ X, j∈ Y m i j . (35) 
Minimizing the variational energy E ( c p , c m , c b , λ) is equivalent to diagonalizing the 3 × 3 variational Hamiltonian H, which 
can be performed with minimal cost comparing to the full matrix. 

The resulting stationary populations of the peak and the mesa are plotted in Fig. 5 . One of the notable features of 
the peak–mesa transition is the sharpness of the population change: The peak population is almost entirely replaced by 
the mesa as soon as one enters the mesa-dominated regime. Such drastic transformation has been reported [30,37] for 
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Fig. 6. (a) Phase diagram for the peak–mesa fitness landscape with f p = 2 , f = 1 and (L, d, l) = (40 , 20 , 8) . (b) Phase diagram plotted with the rescaled 
variables g = uL/ ln ( f p / f ) and y = (L/l) ln ( f m / f p ) / ln ( f p / f ) . It is quite remarkable that the phase boundaries for different parameters all collapse onto the 
universal lines. 
competing species and is in contrast with the peak-to-background and the mesa-to-background transitions where the peak 
populations vanish continuously as mutation rate increases. While the 3 × 3 variational Hamiltonian produces only 3 low- 
lying eigenvalues, we have verified through exact diagonalization for genome lengths up to 12 that the ground state of the 
full Hamiltonian is non-degenerate and generally maintains a finite gap from the rest of the energy levels. As expected, the 
transition points obtained by the exact diagonalization deviates from the variational approach. However, for realistic values 
of the mutation probability, the variational method not only provides the correct qualitative picture but also serves as a 
reasonably good quantitative description. 

The major results of this Article is shown in Fig. 6 : Varying the mesa fitness f m and the mutation probability u , one can 
map out the complete phase diagram for the quasispecies associated with the peak and the mesa. Fixing f p = 2 and f = 1 , 
it leaves 1 < f m < 2 as the range of interest for the mesa fitness. When the mesa fitness is larger than a certain critical 
value, there are two phase transitions: peak to mesa first, followed by mesa to background. As the mesa fitness grows larger, 
the mesa territory in the phase diagram becomes larger as well. These two phase boundaries meet at the triple point , below 
which only direct transition from peak to background occurs. It is quite interesting that the error threshold g c = 1 remains 
intact when the quasispecies of the mesa is unstable. 

Let us try to construct an intuitive picture to understand the phase diagram. Employing the assumption of no back mu- 
tation again, one can introduce the notion of “effective fitness" integrating the fitness and the mutation effects together. The 
effective fitness for the peak is the actually reproduction rate with finite mutation probability in the quasispecies equation, 

f eff 
p = f p (1 − u ) L ≈ f p e −uL , (36) 

as long as the mutation probability u + 1. Note that the back mutations to the wild-type sequence are ignored in the above 
expression. The peak fitness acquires a renormalized factor e −uL due to point mutations. Similarly, the effective fitness for 
the mesa can be computed, 

f eff 
m = f m (1 − u ) L −l ≈ f p e −u (L −l) . (37) 

Because of the tolerant length l , the renormalization factor for the mesa e −u (L −l) is larger than that for the peak. It reflects 
the truth that the mesa is more robust again mutations. Finally, because the background sequences are the majority, a small 
mutation probability does not change the fitness at all, f eff = f . 
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Because the mutation effects are taken into account, the population evolution follows “the survival of the effectively 

fittest”! The peak–mesa boundary is determined by equating the corresponding effective fitness, 
f eff 

p = f eff 
m → ln ( f p / f m ) = ul. (38) 

Following similar steps, the peak–background and the mesa–background phase boundaries are determined, 
f eff 

p = f eff → ln ( f p / f ) = uL ; (39) 
f eff 
m = f eff → ln ( f m / f ) = u (L − l) . (40) 

The analytic forms of these phase boundaries provide an easy way to understand the phase diagram. 
But, how reliable are these estimated phase boundaries? It is convenient to introduce the rescaled variables: g for the 

mutation probability and y for the mesa fitness, 
g = uL 

ln ( f p / f ) , y = L 
l ln ( f m / f p ) 

ln ( f p / f ) . (41) 
In terms of the rescaled variables, the peak–mesa, the peak–background and the mesa–background phase boundaries are 

y = −g, g = 1 , (42) 
y = (L/l − 1) g − L/l. (43) 

For fixed L / l ratios, the phase boundaries should collapse onto the above universal lines when plotted with the rescaled 
variables. As shown in Fig. 6 , for different parameters (L, d, l) = (20 , 10 , 4) , (30 , 15 , 6) , (40 , 20 , 8) , the phase boundaries 
indeed fall onto the predicted universal lines. The triple point where all three phases join takes on the universal value, 
(g t , y t ) = (1 , −1) in terms of the rescaled variables. The effective fitness turns out to be a simple yet power concept to 
understand the phase diagram for the peak–mesa fitness landscape. 

In conclusion, we apply the variational method to the single-peak and the peak–mesa fitness landscapes and obtain the 
stationary population of the quasispecies Figs. 1 and 5 ). A quantitative theory is important in providing testable predic- 
tions that can be comparedwith observations. Unfortunately, solutions for Eigen’s quasispecies equation are not available for 
generic fitness landscapes except for the simplest case. Numerical approach to the same problem is also challenged by the 
sheer size of the mutation matrix that grow exponentially with the sequence length. Our mapping of the Eigen model to 
a Hamiltonian system opens up standard approximation techniques developed for the later to the treatment of the former. 
The variational method we apply for the peak–mesa fitness landscape allows the computation of the phase diagram ( Fig. 6 ) 
with minimal numerical cost. The variational approach offers a quantitative estimate for the critical mesa fitness, i.e. the 
triple point. In addition, without the guidances within the variational approach, it would be extremely hard to find these 
universal curves in terms of the rescaled variables by brute-force numerical endeavors. 

The phase diagram also suggests that the original error threshold for the peak-to-background transition remains un- 
affected before the mesa gains enough fitness. Even then, within the peak-dominant regime, the peak population stays 
insensitive to the mesa state until the dramatic takeover by the mesa population at the peak–mesa boundary. While we 
do not expect the single-point mutation rate for organisms in the wild to vary significantly, the fitness of species generally 
depends on environmental factors which can vary over time. Based on the calculated results, we can expect to see a rapid 
and complete displacement of a highly optimized species with specific genetic combination by a less optimized species with 
a more robust genetic combination. 
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Appendix A. S-wave decomposition 

In the Eigen model, the fitness landscape is spherically symmetric around the wild-type peak. Thus, it is convenient to 
introduce the s -wave decomposition for generic configurations, 

# = (ψ 0 , ψ 1 , . . . , ψ L ) , (A.1) 
where ψ d is a row vector representing states with Hamming distance d to the peak and thus has the dimension of C L 

d = 
L ! /d!(L − d)! . Because we are interested in the low-energy sector of the effective Hamiltonian, it is sufficient to keep the 
so-called “s -wave” sector [15] only. That is to say, out of the many states with the same Hamming distance to the wild-type 
sequence, one only needs to keep the totally symmetric state for each Hamming distance, 

#0 s = (ψ 0 , 0 , .., 0) = (1 , 0 , 0 , . . . , 0) , (A.2) 
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Fig. A.7. Stationary population of the wild-type sequence x 0 plotted against the rescaled variable g in the Crow–Kimura model ( L = 4 , 8 , 6 ) and the discrete 
Eigen model ( L = 16 and r = e 2 , e, 1 . 5 ). For genome length L = 16 , the stationary populations derived from different models exhibit similar trends with the 
same error threshold. 

#1 s = (0 , ψ 1 , 0 , . . . , 0) = √ 
1 
L (0 , 1 , 1 , .., 1 , 0 , 0 , .. 0) , (A.3) 

and all other #ns can be constructed in a similar way. Writing down the effective Hamiltonian explicitly, 
H i j = −√ 

f i f j u d ji (1 − u ) L −d ji , (A.4) 
one can construct the reduced ( L + 1 ) × ( L + 1 ) Hamiltonian in the s -wave sector, 

H nm = ∑ 
i j #ns 

i H i j #ms 
j , (A.5) 

and numerically diagonalize the reduced Hamiltonian to obtain the ground state. The s -wave symmetry helps tremendously 
and reduces the size of the relevant sequence space from N s = 2 L to just (L + 1) . Comparisons among the variational, the 
s -wave decomposed and the exact solutions are summaries in Fig. 3 . 
Appendix B. Crow–Kimura model 

Eigen’s original proposal is formulated in terms of the coupled differential equations. To address the discrete reproduction 
generations, it is helpful to consider the discrete Eigen model for the evolution of populations X i ( t ) (not relative populations) 
in discrete generations, 

X i (t + 1) = ∑ 
j m i j f j X j (t) , (B.1) 

where the mutation matrix m ij and the fitness function f i are defined as in the main text. It is convenient to introduce the 
growth matrix G defined as 

G i j = m i j f j − δi j . (B.2) 
Positive eigenvalues of the growth matrix imply population growth and negative ones mean diminishing populations. The 
stationary state then corresponds to the eigenstate of G with the largest eigenvalue. As demonstrated in Fig. A.7 , the numer- 
ical results for evolution in discrete time steps agrees with those obtained in the original Eigen model. 

Another closely related approach to the error threshold is known as the Crow–Kimura model, described by the set of 
differential equations, 

dX i 
dt = G i X i + ∑ 

j +i j X j , (B.3) 
where G i = G + δi 0 (G p − G ) is the grow rate for the i th sequence and +ij is the mutation-rate matrix with elements +i j = +
for d i j = 1 , +ii = −+L, and zero otherwise. It is known in the literature, by taking the evolutionary time step to the continu- 
ous limit, the discrete Eigen model becomes the Crow–Kimura model. When comparing results from these two models, the 
rescaled variable g plays a crucial role. The relations between f i , u (discrete Eigen) and G i , + (Crow–Kimura) are 

f i = 1 + G i 't , u = +'t , (B.4) 
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Fig. A.8. The stationary population of the wild-type sequence x 0 in the continuous limit ( u → 0 + and r → 1 + ) for genome lengths varying from L = 4 
(green) to L = 16 (red). Note that the scaling function with infinite genome length in the continuous limit is just the linear function x ∗0 (g) = 1 − g below 
the error threshold g c = 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
where 't is the microscopic time step before taking continuous limit. The rescaled variable g thus takes a slightly different 
form, 

g = uL 
ln ( f p / f ) 

= lim 
't→ 0 +L 't 

ln (1 + G p 't) − ln (1 + G 't) 
= +L 

G p − G . (B.5) 
Plotted versus the rescaled variable g , the stationary populations of the wild-type sequence for the discrete Eigen model and 
the Crow–Kimura model are shown in Fig. A.7 . For discrete Eigen model with genome length L = 16 , the stationary popu- 
lation x 0 is very close to the universal scaling function in Fig. 2 . The numerical results from the discrete Eigen model agree 
very well with the variational ansatz we proposed for the quasispecies equation. As the relative fitness r ≡ f p / f approaches 
unity, the curve moves closer to the linear function x ∗0 = 1 − g as expected. The Crow–Kimura model delivers similar trend 
for the stationary population of the wild-type sequence and leads to the same error threshold for the quasispecies. The suc- 
cess of the variational approach relies on the fact that the ground state is mainly composed of the chosen base functions, 
verified by the exact diagonalization. 

The equivalence between the Crow–Kimura model and the Eigen model emerges in the continuous time limit 't → 0. 
Utilizing the relations in Eq. (B.4) , it corresponds to u → 0 + and r → 1 + in the Eigen model. Taking the continuous limit in 
the Eigen model, 

εc (g, L ) ≡ lim 
r→ 1 ε

r − 1 = 1 
2 
[ 

1 − g + g 
2 L − 1 

] 
, (B.6) 

'c (g, L ) ≡ lim 
r→ 1 '

r − 1 = 1 √ 
2 L − 1 g. (B.7) 

After some algebra, the stationary population of the dominant sequence x ∗0 (g, L ) in the continuous limit is 
x ∗0 (g, L ) = √ 

ε2 
c + '2 

c + εc √ 
ε2 

c + '2 
c + εc + g . (B.8) 

These curves for various genome lengths from L = 4 to L = 16 are plotted in Fig. A.8 and agree rather well with those 
obtained from Crow–Kimura model in Fig. A.7 . Furthermore, the above expression becomes extremely simple when the 
genome length goes to infinity, 

lim 
r→ 1 x ∗0 (g, r) = ((1 − g) × (1 − g) . (B.9) 

The universal scaling function in the thermodynamic (infinite genome length) and the continuous (infinitesimal generation 
time) limits is just a straight line. 
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